Примеры решения задач по химии

Математика
Дифференциальные уравнения
Примеры решения интегралов
Решение типовых задач
Сопромат, начерталка
Работа«Соединение болтом»
Работа «Соединение шпилькой»
Выполнить эскизы

Деталирование чертежа

Контрольная работа по сопромату
Проекционное черчение
Начертательная геометрия
Физика, электротехника
Учебник по физике
Лабораторные и контрольные
работы по электротехнике
Кинематика
Примеры решения задач
Динамика движения твердого тела
Работа и энергия
Электростатика
Энергия электростатического поля
Законы постоянного тока

Сила Ампера.

Энергия магнитного поля
Термодинамика
Учебник по информационным технологиям
Информационные сети
Информационные ресурсы сетей
Физические характеристики
волоконно-оптических передающих сред
Основные сервисы сетевой среды Internet
Протоколы и сервисы поисковых систем
Подсети. Маска подсети. Имена
Таблица маршрутизации
Методы коммутации информации
Высокоскоростное подключение
по аналоговым каналам
Взаимосвязь с другими сетями и архитектурами
Потери пакетов
Распределенные системы обработки данных
Создание стандартных технологий локальных сетей
Проблемы объединения нескольких компьютеров
Логическая структуризация сети
Поддержка разных видов трафика
Пропускная способность линии
Кабели на основе экранированной витой пары
Асинхронная и синхронная передачи
Методы коммутации
Коммутация пакетов
Технология Fast ethernet
Технология Gigabit ethernet
Технология FDDI
Технология виртуальных сетей
Структура глобальной сети
Основные принципы технологии АТМ
Технология мобильных сетей
Организация физических и логических каналов
в стандарте GSM
Схема взаимодействия локальных, городских
и глобальных вычислительных сетей
Удаленный доступ
Типы используемых глобальных служб
Многосегментные концентраторы
Типы адресов стека TCP/IP
Таблицы маршрутизации в IP-сетях
Протокол надежной доставки TCP-сообщений
Использование выделенных линий для построения
корпоративной сети

Использование служб ISDN в корпоративных сетях

Энергетика
Рентгеновское излучение
Ускорители элементарных частиц и ионов
Первый бетатрон для ускорения
электронов
Реактор БИГР (быстрый импульсный
графитовый реактор)
Атомные батареи в космосе
Атомные батареи для маяков, бакенов
Космические ядерные аварии
Импульсные реакторы
Излучатели нейтронов
Лекции по радиобиологии
Загрязнение окружающей среды
в результате ядерных взрывов
Выбрасы радиоактивных веществ
в атмосферу
Газообразные выбросы АЭС
Нормирование выбросов радиоактивных
газов в атмосферу
АЭС с реактором ВВЭР
АЭС с быстрыми реакторами
Химические свойства радиоактивных элементов
Применение тория
Химически уран

Плутоний

Декоративное садоводство
и цветоводство
Садово-парковое искусство
Комнатное цветоводство
Ландшафтный дизайн
Современные садовые стили
Кантри во французском стиле
История искусства
Портретная живопись
Архитектура Франция
Живопись Франция
Скульптура
Франсиско Гойя.
Французская пейзажная живопись
Соединенные Штаты
Основатели фотографии
Реализм и импрессионизм
Моне и импрессионизм.
Эдвард Мунк
Поль Сезанн

Огюст Роден

История искусства средних веков
Искусство остготов и лангобардов
Искусство периода Каролингов
Романское искусство
Скульптура, живопись и прикладное искусство
Средневековое искусство Германии
В романском искусстве Германии
Романские соборы Англии
Искусство Южной Италии
Готическое искусство
Собор в Лане
Собор Сен Пьер в Пуатье
Скульптурное убранство готических
фасадов в Германии
Интерьеры английских соборов
Готическая архитектура Испании
Портрет в русском искусстве ХlX- начала ХХ века
Этапы развития натюрморта в русском исскустве
Химия
Примеры решения задач по химии

Электролиз

Электролиз – это совокупность окислительно-восстановительных процессов, протекающих на электродах при пропускании постоянного электрического тока через раствор или расплав электролита. При электролизе происходит превращение электрической энергии в химическую энергию.

Электролиз проводят в электролизере, который представляет собой емкость, заполненную раствором или расплавом электролита, в который погружены два электрода (например, графитовые) – катод и анод. Катод подсоединяют к отрицательному полюсу внешнего источника тока, а анод – к положительному. Таким образом, катод – отрицательно заряженный электрод, а анод – положительно заряженный электрод. На катоде происходит процесс присоединения электронов катода (от внешнего источника тока) катионами, атомами, молекулами. На аноде происходит процесс отдачи электронов аноду (во внешнюю цепь)  анионами, атомами, молекулами. Таким образом, на катоде протекает процесс восстановления, на аноде – процесс окисления.

Рассмотрим механизм электролиза на примере расплава соли фторида натрия NaF. Расплавы солей являются сильными электролитами, поэтому при высоких температурах полностью диссоциируют на ионы в соответствии с уравнением процесса:
NaF = Na+ + F.–

Под действием электрического тока ионы приобретают направленное движение: катионы будут двигаться к катоду, а анионы – к аноду. Достигнув электродов, ионы начнут разряжаться на их поверхности. На катоде будет происходить процесс восстановления ионов Na+, а на аноде – процесс окисления ионов F–. Запишем электронные уравнения этих процессов и просуммируем их:

(К–): Na+ + e → Na0 2 – процесс восстановления пледы из флиса;Интернет магазин робот для настольного тенниса

(A+): 2F- – 2e → F2 1 – процесс окисления

2Na+ + 2F- → Na0 + F2↑

Суммарное молекулярное уравнение электролиза:

Электролиз водных растворов электролитов осложняется участием в электродных процессах молекул воды. Алгоритм рассмотрения электролиза водных растворов солей приведен в примерах решения задач.

При электролизе водных растворов электролитов необходимо учитывать особенности катодных и анодных процессов:

1. Катионы металлов от Li+ до Al3+ включительно (Е0Меn+/Ме0 < – 1,66 В) не восстанавливаются на катоде, вместо них на катоде восстанавливаются молекулы воды в соответствии с уравнением реакции: 2Н2О + 2е– = Н2 + 2ОН– 

2. Катионы металлов от Mn2+ до H, восстанавливаются на катоде вместе с молекулами воды: Меn+ + ne– = Me0 ; 2Н2О + 2е– = Н2 + 2ОН– 

3. Катионы металлов от Cu2+ до Au3+ полностью восстанавливаются на катоде в соответствии с уравнением реакции: Меn+ + ne– Me0

Если водный раствор электролита содержит катионы различных металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения значений стандартных электродных потенциалов металлов.

4. На практике используют два типа анодов: инертные или нерастворимые (уголь, графит, золото, платина) и активные или растворимые (Cu, Ag, Ni, Zn и др). Инертные электроды не участвуют в процессе электролиза. Активные аноды сами участвуют (окисляются) в процессе электролиза в соответствии с уравнением реакции:
Ме0 – ne– = Men+.

5. Анионы кислородсодержащих кислот (SO42-, NO3-, CO32-, PO43-), в которых центральный атом (S+6, N+5, C+4, P+5).находится в высшей степени окисления, а также ионы F– никогда не окисляется на аноде из водных растворов электролитов. Вместо них окисляются молекулы воды: 2Н2О – 4е– = О20 + 4Н+

Количественные соотношения между массой выделившихся на электродах веществ и количеством прошедшего электричества через раствор или расплав электролита выражают законом Фарадея:

 , (32)

где m – масса вещества, выделившегося на электроде;

Э – его химический эквивалент;

Q – количество электричества (Кл);

F – число Фарадея (F= 96500 Кл).

Q = I·t, где I – сила тока (А), t – время электролиза (с).

 Э=А/n, где А – атомная масса элемента; n – степень окисления его в соединении.

Тогда выражение (31) примет вид:

 (33)

При электролизе в реальных условиях масса выделившегося вещества (его практический выход) всегда меньше массы вещества, рассчитанной по закону Фарадея. Это объясняется тем, что наряду с основными электродными процессами протекают побочные процессы, на которые расходуется часть количества электричества. Поэтому вводится понятие «выход по току»:

Впт =mпр/mтеор×100%,  (33)

где mпр – масса вещества, практически полученного в процессе электролиза;

  mтеор - масса вещества, теоретически рассчитанная по закону Фарадея.

Инженерная графика http://diclas.ru/ пледы из флиса;Интернет магазин робот для настольного тенниса
Математика, сопротивление материалов, электротехника лекции, задачи