Рентгеновское излучение Ускорители элементарных частиц и ионов. Первый бетатрон для ускорения электронов Реактор БИГР Атомные батареи в космосе Атомные батареи для маяков, бакенов Космические ядерные аварии
Импульсные реакторы Излучатели нейтронов Лекции по радиобиологии Загрязнение окружающей среды в результате ядерных взрывов

Атомные реакторы и батареи. Радиобиология

Историческое первенство в космических ядерных авариях принадлежит США - в 1964 г. не смог выйти на орбиту американский навигационный спутник с атомным реактором на борту, и этот реактор развалился в атмосфере вместе со спутником на куски.

В СССР первая авария связана с запущенным 18 сентября 1977 4300-килограммовым спутником серии УС-А (псевдоним «Космос-954», параметры орбиты: перигей 259 км, апогей 277 км, наклонение 65 градусов). Спутник входил в состав спутниковой системы морской космической разведки и целеуказания МКРЦ «Легенда», предназначенной для обнаружения кораблей вероятного противника и выдачи данных для применения по ним нашим флотом крылатых ракет. В конце октября 1977 «Космос-954» прекратил регулярные коррекции орбиты, но перевести его на орбиту захоронения не удалось. По последующим сообщениям ТАСС, 6 января 1978 спутник внезапно разгерметизировался, из-за чего бортовые системы вышли из строя. Неуправляемое снижение аппарата под действием верхних слоев атмосферы завершилось 24 января 1978 сходом с орбиты и падением радиоактивных обломков па севере Канады в окрестности Большого Невольничьего озера. Урановые элементы спутника полностью сгорели в атмосфере. На земле нашли лишь остатки бериллиевого отражателя и полупроводниковых батарей. Тем не менее радиоактивный космический мусор оказался разбросанным на северо-западе Канады на площади в несколько тысяч квадратных километров. СССР согласился выплатил Канаде 3 миллиона долларов, составивших 50% стоимости операции «Morning Light» по очистке района падения «Космоса-954».

28 декабря 1982 работавший с 30 августа «Космос-1402» не удалось перевести на орбиту захоронений и он начал неконтролируемое снижение. Конструктивные доработки после предыдущей аварии позволили отделить активную зону от термостойкого корпуса реактора и предотвратить компактное падение обломков. Активная зона вошла в атмосферу 7 февраля 1983 и радиоактивные продукты деления рассеялись над Южной Атлантикой.

В апреле 1988 была утеряна связь с «Космосом-1900», выведенным на орбиту в декабре 1987. В течение пяти месяцев спутник неконтролируемо снижался, и наземные службы не могли дать команду ни на увод реактора на высокую орбиту, ни на отделение активной зоны для более безопасного ее схода с орбиты. К счастью, за пять суток до ожидавшегося входа в атмосферу, 30 сентября 1988 сработала система автоматического увода реактора, включившаяся ввиду исчерпания запаса топлива в системе ориентации спутника.

Продолжением источников питания типа «Топаз» явилась термоэмиссионная ядерная энергетическая установка «Енисей-Топаз». Электрогенерирующий канал - одноэлементный Мощность электрическая - 5 кВт, ресурс - до 3 лет.

Рис.10. ЯЭУ «Енисей»

Хотя само по себе происшествие не нанесло материального ущерба, его наложение на предшествовавшие катастрофы «Челленджера» и Чернобыльской АЭС привело к протестам против использования ядерных энергоустановок в космосе. Это обстоятельство стало дополнительным фактором, повлиявшим на прекращение полетов спутников с космическими локаторами в 1988. Впрочем, основной причиной отказа от космических локаторов с ядерным энергопитанием стали не призывы мировой общественности и уж тем более, не создаваемые реакторами помехи для гамма-астрономии, а низкие эксплуатационные характеристики.

Кроветворный синдром. Красный костный мозг - типичный пример системы клеточного обновления.

Красный костный мозг характеризуется высокой радиочувствительностью и поэтому поражение системы кроветворения в той или иной степени наблюдается при облучении даже в относительно невысоких дозах. На примере красного костного мозга рассмотрим общие принципы функционирования системы клеточного обновления, которые можно экстраполировать и на другие самообновляющиеся системы клеток.

Как известно, основная функция красного костного мозга – продукция дифференцированных зрелых клеток крови – эритроцитов, лейкоцитов, лимфоцитов, тромбоцитов. Потеря любой из этих клеток в организме,  восполняется образованием в костном мозге новой клетки. В системе клеточного обновления млекопитающих условно можно выделить несколько типов клеток, различающихся по степени зрелости и дифференцированности, так называемых клеточных пулов (рис. 3). Предшественниками клеток крови являются молодые недифференцированные клетки красного костного мозга – стволовые (клоногенные) клетки. Эти клетки способны постоянно делиться, и обеспечивать поступление новых клеток в кровь. Пройдя одно или несколько делений, стволовая клетка дифференцируется, созревает и превращается в какую-либо функционально активную клетку. Деление, дифференцировка, созревание различных типов клеток происходить с такой скоростью, чтобы поддерживать определенное количество тех или иных клеточных элементов в периферической крови. Скорость обновления клеток может варьировать в определенных пределах, в зависимости от физиологического состояния организма. Например, скорость обновления клеток крови повышается при воспалительных процессах.

Клеточные пулы

Костный мозг

Кровь

Стволовая клетка

Делящиеся и созревающие клетки

Созревающие

клетки

Функциональные клетки

Рис.3. Схематичное изображение системы обновления клеток крови в организме млекопитающих

Под действием ионизирующих излучений происходят резкие нарушения  динамического равновесия между отдельными пулами, что приводит к тяжелым функциональным расстройствам и, в конечном счете, может привести к гибели организма. Нарушение клеточного гомеостаза при этом происходит вследствие временной задержки деления клеток, репродуктивной, и интерфазной гибели молодых недифференцированных клеток, изменения продолжительности процессов клеточного созревания, снижения времени жизни зрелых клеток. В результате этих процессов первые три пула начинают опустошаться  сразу в ближайшие часы после облучения. Количество зрелых клеток начинает снижаться  значительно позднее, когда естественная убыль их перестает восполняться из-за опустошения соответствующих пулов. В соответствии с правилом Бергонье –Трибондо, наиболее высокой радиочувствительностью отличаются молодые, делящиеся клетки. Так показано, что при дозе 6 – 7 Гр электромагнитного ионизирующего излучения, пролиферативную активность сохраняет всего 2-3 стволовых клеток из каждой тысячи клеток красного костного мозга. В результате облучения происходит подавление процесса образования новых клеток и опустошение пулов различных клеточных элементов в соответствии со временем их жизни.

Опустошение костного мозга начинается сразу после облучения и продолжается до некоторого минимума, после чего число клеток начинает повышаться вследствие регенерации выживших клеток. Относительное количество выживших клеток, продолжительность опустошения клеточных пулов, интенсивность регенерационных процессов зависят от дозы облучения. На рисунке 4 показана динамика изменения  выживших клеток при облучении мышей при Д37. Как видно, при такой дозе облучения на 6-8 сутки в организме остается всего около 10 % стволовых клеток. Через 10 суток после облучения число клеток начинает увеличиваться вследствие размножения выживших клеток. На 16 сутки количество стволовых клеток составляет уже 70 % от числа стволовых клеток необлученного организма.

Рис.4. Изменение числа стволовых клеток красного костного мозга после облучения мышей при дозе равной Д 37.

Ось абсцисс – время после облучения, ось ординат – доля живых клеток.

В СССР параллельно работам по созданию ЯЭУ с термоэлектрическими генераторами проводились работы по ЯЭУ с термоэмиссионными преобразователями, имеющими более высокие технические характеристики

Ядерное топливо в Топазе-1 (диоксид урана обогащенный ураном-235) заключено в сердечнике из тугоплавкого материала, служащей катодом (эмиттером) для электронов.

ЯЭУ «Топаз-1» разрабатывалась для спутников радиолокационной разведки, «Топаз-2» – для космических аппаратов системы непосредственного телевизионного вещания из космоса.

Смеси фосфоров с радиоактивными изотопами (обычно с а-излучателями, типа радий-226) давно и широко применяются для оформления контрольных приборов на борту самолёта, часов, елочных игрушек и т.п. - везде, где требуются краски постоянного свечения

В настоящее время к космическим ядерным энергетическим установкам (КЯЭУ) нового поколения предъявляются следующие требования

Основные направления работ в термоэмиссии после завершения работ по программам создания КЯЭУ «ТОПАЗ» и ЯЭУ «Енисей» связаны с необходимостью радикального увеличения к.п.д. с уровня ~10% до 20-30%, ресурса работы электрогенерирующих каналов (ЭГК) и систем в составе ЯЭУ – с 1-2 лет до 10-20 лет при существенном ограничении массогабаритных характеристик


Энергетика