Машиностроительное черчение Проекционное черчение Инженерная графика

Математика
Дифференциальные уравнения
Примеры решения интегралов
Решение типовых задач
Сопромат, начерталка
Контрольная работа
Проекционное черчение
Прямоугольная изометрия
Методика изучения курса
Составить спецификацию изделия
Определение центра дуги окружности
Последовательность нанесения размеров
Начертательная геометрия
Задание и изображение плоскости
на чертеже
Пересечение прямой линии с плоскостью
Гранные поверхности.
Чертежи призмы и пирамиды
Пересечение сферы с плоскостью
МЕТРИЧЕСКИЕ ЗАДАЧИ
РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
Физика, электротехника
Лабораторные и контрольные
работы по электротехнике
Термодинамика
Декоративное садоводство
и цветоводство
Садово-парковое искусство
Комнатное цветоводство
Ландшафтный дизайн
Современные садовые стили
Кантри во французском стиле
 
Химия
Примеры решения задач по химии

Общие сведения из теории аксонометрических проекций

Раздел «Аксонометрические проекции» является одним из наиболее важных и интересных в курсе начертательной геометрии. Используя теорию аксонометрии, можно легко строить наглядные изображения геометрических фигур, деталей, сборочных единиц и других реальных объектов.

Ограниченность времени, отводимого на освоение начертательной геометрии, не позволяет подробно изучить указанную теорию. Поэтому в настоящих методических указаниях приведены лишь основополагающие сведения по построению аксонометрических проекций геометрических фигур (точка, окружность, правильный шестиугольник), а также тел со сквозными призматическими отверстиями (цилиндр, конус, шар). Кроме этого показаны этапы построения аксонометрии наиболее распространённых конструктивных элементов (фасок, фланцев, отверстий). Все построения выполнены в прямоугольной изометрии – наиболее наглядном виде аксонометрических проекций. За основу построения аксонометрических проекций геометрических фигур, тел или конструктивных элементов взяты их ортогональные чертежи.

Аксонометрической проекцией (аксонометрией) геометрической фигуры называется параллельная проекция этой фигуры и связанной с ней прямоугольной системой координат. В качестве примера на рис. 1 показана параллельная проекция на плоскость П ¢

точки А и связанной с ней прямоугольной системы координат Оxyz. Для получения наглядности (эффекта объемности) изображения выбирают такое направление проецирования s, при котором ни одна из трех координатных плоскостей (xОy, xОz или yОz) не имела бы на плоскости П¢ вырожденной проекции в виде прямой линии.

В этом случае любые отрезки, расположенные на координатных осях (например, ОАх, ОАу, ОАz, которые являются координатами точки А), будут проецироваться на плоскость П¢ искаженно, т. е. не в натуральную величину.

Отношение аксонометрической проекции отрезка, расположенного на координатной оси или параллельно этой оси, к натуральной величине этого отрезка называется коэффициентом искажения аксонометрической проекции по данной координатной оси. В теории аксонометрии используются три коэффициента искажения:

 u = О¢A¢x /OAx; v =О¢A¢y /OAy; w = О¢A¢z /OAz

по координатным осям Ох, Оy и Оz соответственно.

Если u = v = w, то такая аксонометрическая проекция называется изометрией.

 Если  u = w ¹ v - диметрией. Если u ¹ v ¹ w - триметрией.

В зависимости от направления проецирования s по отношению к плоскости П ¢ различают прямоугольную аксонометрию, если s ^ П ¢ или косоугольную аксонометрию, если направление s не перпендикулярно плоскости П ¢.

Точки А¢1, А¢2, А¢3 аксонометрического чертежа называются соответственно вторичной горизонтальной, вторичной фронтальной и вторичной профильной проекцией
точки А, то есть это по существу аксонометрические проекции ортогональных проекций этой точки.

На аксонометрическом чертеже любая последовательность трех взаимно перпендикулярных отрезков, являющихся аксонометрическими координатами точки А, в которой начало последующего отрезка совпадает с концом предыдущего (например, последовательность О¢А¢х - А¢х А¢1 - А¢¢), называется координатной ломаной точки А. Независимо от последовательности построения координатной ломаной, её конечной точкой будет аксонометрическая проекция точки А.

В качестве примера на рис. 2 показан ортогональный и аксонометрические чертежи точки А. При этом построены вторичная фронтальная проекция точки А (см. точку А¢2 на рис. 2, б) и её вторичная горизонтальная проекция (см. точку А¢1 на рис. 2, в). В первом случае использована координатная ломаная О¢А¢х - А¢х А¢2 - А¢¢ (последовательность координат x¢ – z¢ – y¢ ) а во втором случае – координатная ломаная О¢А¢х - А¢х А¢1 - А¢¢ (последовательность координат x¢ – y¢ – z¢ ).

В дальнейшем понятие вторичной проекции будет использовано при построении изображения сквозного призматического отверстия в цилиндре, конусе и шаре.

3.1 Стандартные аксонометрические проекции

Стандартом (ГОСТ 2.317 – 69) предусмотрено пять типов аксонометрических проекций, которые применяются в чертежах изделий для всех отраслей промышленности и строительства.

Прямоугольная изометрическая проекция имеет натуральные коэффициенты искажения по координатным осям u = v =w = 0,82. Для удобства построения применяют приведенные коэффициенты искажения U = V = W = 1, в результате чего аксонометрическое изображение получается увеличенным в 1,22 раза по отношению к ортогональному изображению. Расположение аксонометрических осей показано на рис. 3, а. Их построение будет рассмотрено далее.

Косоугольная фронтальная изометрическая проекция имеет натуральные коэффициенты искажения u = v = w = 1 по координатным осям, а расположение этих осей показано на рис. 4, а. Здесь в скобках приведены допускаемые значения угла наклона оси О¢у¢.

Косоугольная фронтальная диметрическая  проекция имеет натуральные коэффициенты искажения u = w = 1; v = 0,5 по координатным осям. Расположение этих осей показано на рис. 4, а.

Косоугольная горизонтальная изометрическая проекция имеет натуральные коэффициенты искажения u = v = w = 1 по координатным осям, а расположение этих осей показано на рис. 4, б.

Машиностроительное черчение