Машиностроительное черчение Проекционное черчение Инженерная графика

Прямоугольная диметрическая проекция

Наиболее простую и распространенную диметрию получают,

если и = w и v = Вычислим показатели искажения. Из

 

соотношения u2 + v2 + w2 = 2 имеем u2 +  + u2 = 2, откуда и = »0,94, тогда w = 0,94; v =»0,47.

В практике применяют приведенные коэффициенты искажения U == W = 1 и V = 0,5, При этом коэффициент приведения »1,06 Таким образом, изображение предмета получается увеличенным в 1,06 раза.

Расположение аксонометрических осей в диметрической проекции показано на рис 9.5, Оси х'у¢ встроят по тангенсам углов. Так tg 7010¢=; tg41025¢=

Продолжение оси у' за центр О¢ является биссектрисой угла X¢O¢Z¢, что также может быть использовано для построения оси у¢'

 

 

Косоугольные аксонометрические проекции

ГОСТ 2.317 - 69 рекомендует использовать косоугольную диметрию. В практике черчения наиболее часто используется такая косоугольная диметрия, у которой коэффициент искажения по оси у' принимается равным 0,5, а угол, составленный этой осью с другими осями - 135° (рис 9.2 д). Согласно ГОСТ 2,317 - 69, такую аксонометрическую проекцию называют фронтальной биометрической проекцией (в литературе ее иногда называют кабинетной).

Косоугольная фронтальная диметрическая проекция предпочтительна в тех случаях, когда окружности лежат в плоскостях, параллельных плоскости V,

ГОСТ 2.317 - 69 также рекомендует использовать и другую косоугольную проекцию - фронтальную изометрическую проекцию. В литературе ее иногда называют кавальерной перспективой (рис 9.2в,). Фронтальную изометрическую проекцию выполняют без искажения по осям х¢ у¢z¢

В практике черчения ГОСТ 2,317 - 69 разрешает использовать и еще одну косоугольную проекцию - горизонтальную изометрическую проекцию (в литературе иногда такую проекцию называют зенитной изометриеи). Горизонтальную изометрическую проекцию выполняют без искажения по осям х', у', z' (рис 9.2 , г).

Аксонометрические проекции окружности

Окружность в аксонометрической проекции представляет собой эллипс, Построение эллипса сравнительно сложно, поэтому его заменяют овалом. Овал - это кривая, по очертанию похожая на эллипс, но строится при помощи циркуля.

Окружность в прямоугольной изометрии

Окружности, вписанные в грани куба ( рис 9.6а ), проецируются в эллипсы, В прямоугольной изометрии все три эллипса одинаковы по форме, равны друг другу, но расположены различно (рис 9.6.б) . Их малые оси всегда располагаются по направлению отсутствующей в данной плоскости аксонометрической оси, а большая ось к ней перпендикулярна.

 Большая ось=1,22D


Существует несколько способов построения окружности в

изометрической проекции.

Первый способ. Строят ромб со стороной, равной D окружности. Точки А и В - центры больших дуг радиуса R, Точки С и Е - центры малых дуг радиуса г. Точки 1, 2, 3. 4 - точки сопряжения дуг (рис 9.7а ).

Второй способ. Проводят две окружности, одна - диаметром, равным большой оси овала (АВ = 1,22 D), вторая - диаметром, равным малой оси (СЕ = 0,71 D). Точки Oi и Oi - центры больших дуг овала, а точки Оз и 04 - центры малых дуг. Точки 1, 2, 3, 4 - точки сопряжения дуг (|рис 9.7i, б).

На рис 9-8 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяем точки 1 и 2. Отрезок 1 - 2 - малая ось эллипса. Из точек 1 и 2, как из центров, описываем дуги радиусом 1 - 2 до их взаимного пересечения. Отрезок 3 - 4 - большая ось эллипса.


 

 

 

 

http://altaytravi.ru панты марала настойка как сделать
Машиностроительное черчение