Машиностроительное черчение Проекционное черчение Инженерная графика

Математика
Дифференциальные уравнения
Примеры решения интегралов
Решение типовых задач
Сопромат, начерталка
Контрольная работа
Проекционное черчение
Прямоугольная изометрия
Методика изучения курса
Составить спецификацию изделия
Определение центра дуги окружности
Последовательность нанесения размеров
Начертательная геометрия
Задание и изображение плоскости
на чертеже
Пересечение прямой линии с плоскостью
Гранные поверхности.
Чертежи призмы и пирамиды
Пересечение сферы с плоскостью
МЕТРИЧЕСКИЕ ЗАДАЧИ
РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
Физика, электротехника
Лабораторные и контрольные
работы по электротехнике
Термодинамика
Декоративное садоводство
и цветоводство
Садово-парковое искусство
Комнатное цветоводство
Ландшафтный дизайн
Современные садовые стили
Кантри во французском стиле
 
Химия
Примеры решения задач по химии

АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ

Во многих случаях при выполнении технических чертежей оказывается необходимым наряду с комплексным чертежом оригинала давать более наглядное изображение, обладающее свойством обратимости.

С этой целью применяют чертеж, состоящий только из одной параллельной проекции данного оригинала, дополненный проекцией пространственной системы координат, к которой предварительно отнесен изображаемый оригинал. Такой чертеж называется аксонометрическим или аксонометрией. Слово аксонометрия означает «измерение по осям».

Рассмотрим построение аксонометрической проекции. Выберем какую - нибудь плоскость проекций Р и спроецируем на нее по направлению S заданную точку А вместе с осями прямоугольных (натуральных) координат, к которым она отнесена в пространстве (рис 9.1 ). Плоскость Р называют тоскостъю аксонометрических проекций (эту плоскость называют также картинной плоскостью).

Проекция А' называется аксонометрической проекцией точки А, а точка А¢1 - вторичной проекцией точки А, В дальнейшем аксонометрическую проекцию A/ условимся обозначать так же, как ' в пространстве, буквой А.

Проекция O¢A¢xA¢1A¢ называется аксонометрической координатной ломаной..

Отрезки О¢ Ax¢, Ax¢ А1¢¢ и А ¢¢ , соответственно параллельные осям х¢, у¢ и z¢ - аксонометрическими отрезками координат.

Проекция O'x'y'z называется аксонометрической системой координат. Она состоит из аксонометрических осей х¢, у¢, z¢, пересекающихся в точке О', называемой аксонометрическим началом координат.

Проекции х,¢ у¢, z¢ осей х, у и z называются аксонометрическими осями координат.

Проекции е'я e'y, ё'г натурального масштаба е называются аксонометри ческими масштабами.

Показатели искажения

Отношения аксонометрических координат к натуральным (при одной и той же натуральной единице е) называются показателями искажения по ослы.

Обозначим через и показатель искажения по оси х, через v - показатель искажения по оси .у, через w - показатель искажения по оси г, тогда

;

Если все три показателя искажения по осям равны между собой:

и = v = w, то аксонометрическая проекция называется изометрией.

Если два показателя искажения равны между собой и отличаются от третьего показателя, то аксонометрическая проекция называется диметрией. При этом и = v ¹ w, или v = w¹ и, или w = и ¹ v.

Если все три показателя искажения по осям различны; u¹v; v¹w, w¹u, то аксонометрическая проекция называется триметрией.

В зависимости от наклона изображаемого предмета к плоскости аксонометрических проекций и угла, образуемого проецирующими лучами с аксонометрической плоскостью, получают аксонометрические проекции различного типа. Если проецирующие лучи перпендикулярны к плоскости аксонометрических проекций, проекции называют прямоугольными; если проецирующие лучи не перпендикулярны к плоскости аксонометрических проекций, проекции называют косоугольными.

Все виды аксонометрических проекций обладают следующими свойствами:

 


 

- любому чертежу в аксонометрических проекциях должен предшествовать чертеж выполненный в ортогональных проекциях;

- ось г проецируется всегда вертикально;

- все измерения делаются только по осям или параллельно

осям;

- все прямые линии, параллельные между собой или

параллельные осям симметрии на ортогональном чертеже, остаются параллельными в аксонометрии.

9.3. Стандартные аксонометрические проекции

Для единого правила выполнения аксонометрических изображений разработан ГОСТ 2,317-69.

К числу стандартных прямоугольных аксонометрических проекций относятся изометрическая проекция (\ рис 9;2а ,);

диметрическая проекция ( рис 9.26 ).

К числу стандартных косоугольных аксонометрических проекций относятся фронтальная изометрическая проекция ( рис 9.2в );

горизонтальная изометрическая проекция ( рис 9.2г ); фронтальная диметрическая проекция ( рис 9.2 , д).

9.3.1. Прямоугольная изометрическая проекция

Она образуется, когда оси координат одинаково наклонены к картинной плоскости Р (рис 9.1). Следовательно, аксонометричес- кие оси в прямоугольной изометрии образуют между собой углы по 120° (рис.9.3).

Рис. 9.3

 
Зная основную формулу прямоугольной аксонометрии и2 + v2 + w2 = 2 и равенство коэффициентов искажения изометрической проекции и = v = w, можно определить коэффициенты искажения:

3u2=2; u=»0,82; u=v=w=0,82

  Следовательно, при построении прямоугольной изометрической проекции натуральные размеры вдоль координатных осей сокращаются в » 0,82 раза.

На практике коэффициенты искажения принимают равными единице. В этом случае изображение предмета получается

увеличенным, при этом коэффициент приведения =1,22

 Действительные коэффициенты искажения называют точными, а увеличенные - приведенными и обозначают их, в отличие от точных, прописными буквами: U = V = W = 1. На рис 9.4 показано построение изометрических осей без измерения углов транспортиром. Первый способ (рис 9.4.а) основан на делении окружности на шесть равных частей. Выбрав на оси z¢ точку О¢, проводим дугу произвольного радиуса; она пересечет ось z' в точке А, Из этой точки тем же радиусом проводим вторую дугу. Точки В пересечения дут используем для проведения осей x¢ и у¢.

На Рис(9,4,б) показан второй способ построения изометрических осей. Наклон оси в 30° получается при соотношении длин отрезков 3:5 (например, 3 и 5 клеток).

а)  Рис.9.4. б)

Машиностроительное черчение