Машиностроительное черчение Проекционное черчение Инженерная графика

0пределение действительной величины отрезка по его ортогональным проекциям

Отрезок прямой проецируется в натуральную величину лишь в том случае, когда он параллелен плоскости, на которую он проецируется.

Во всех остальных случаях он проецируется на плоскость проекции с искажением.

Для установления зависимости между действительной величиной отрезка прямой и его проекциями рассмотрим рис 7.14

В прямоугольной трапеции ABB'А' (углы при вершинах А¢ и В' — прямые) боковыми стор ими являются действительная величина отрезка [АВ] и его горизонтальная проекция [А¢ В¢ ], а основаниями [АА¢] и [ВВ¢ ] по величине равные удалению концов отрезка А и В от горизонтальной плоскости Н.

½АА¢ô=Z (. )А;ôВВ¢ô=Z( . )В

Через точку А, в плоскости трапеции, проводим АВ¢1ôôА¢В¢, получим прямоугольный треугольник ABB¢1, у которого катет АВ¢1@¢В']. Поэтому геометрическая зависимость между действительной величиной отрезка и его горизонтальной проекцией может быть установлена с помощью прямоугольного треугольника, один из катетов которого равен горизонтальной проекции А¢ В¢, а другой - разности аппликат котлов отрезкаô BB¢ô-ô АА¢ô Гипотенуза этого треугольника /АВ/ равна действительной величине.

Зависимость между действительной величиной отрезка и его фронтальной проекцией также видна на чертеже.

Для графического определения на эпюре Монжа действительной величины отрезка достаточно построить прямоугольный треугольник, взяв за один его катет горизонтальную^ ( фронтальную, профильную) проекцию отрезка, а за другой катет разность удаления концов отрезка от горизонтальной ( или соответственно фронтальной, профильной) плоскости проекции.

На (рис 7.15) показано определение действительной величины ôАВô путем построения треугольника А¢В¢Во. На этом же чертеже приведен второй вариант решения задачи: построение треугольника А'"В "Ао на базе фронтальной  проекции отрезка.

С помощью прямоугольного треугольника можно решать задачу по построению на эпюре проекции отрезка на перед заданной

длины.

7.6.0пределение расстояния между точкой и прямой. Между двумя параллельными прямыми

Расстояние от точки до прямой определяется величиной отрезка перпендикуляра, опущенного из точки на прямую:

Из чертежа видно (рис.7.16), что определение расстояния от точки до прямой достигается минимальным количеством геометрических построений;

  (m¢, m²) - фронталь: А"М² ^ m² Находим горизонтальную проекцию точки М - M', Методом прямоугольного треугольника определяем натуральную

  величину искомого расстояния AM,

Расстояние между параллельными прямыми определяется величиной перпендикуляра, опущенного из точки, взятой на одной прямой, на другую прямую.

На прямой n (рис.7.17) отмечаем произвольную точку N. Вращаем прямые тип вокруг оси i ^H(iÎN) до положения параллельного фронтальной плоскости проекций (n¢1n²1) и (m¢1m²1). Из точки N'' опускаем перпендикуляр N²M² на прямую m²1. Определяем действительную величину [MN].


Определение расстояния от точки до плоскости, между плоскостями

Расстояние от точки до плоскости определяется величиной отрезка перпендикуляра, опущенного из точки на плоскость.

Пример1_0пределить расстояние от точки А до фронтально проецирующей плоскости a (рис 7.18)

Через А¢ проводим горизонтальную проекцию перпендикуляра m¢^aн через А² - его фронтальную проекцию m²^av. Отмечаем точку M²=m²Çav. Так как [АМ]ôôV, то [А''М''] =ôAMô = d

Рис.7.18.

Пример2_0пределить расстояние от точки К до плоскости, заданной треугольником АВС (рис 7.19).


102

1 .Переводим плоскость треугольника АВС во фронтально- проецирующее положение. Для этого переходим от системы

; выбираем направление оси X1 ^h¢

2.Проецируем треугольник АВС на новую фронтальную плоскость V1 (плоскость треугольника АВС спроецируется в [С²²1];

3.Проецируем на ту же плоскость К® K²1;

4.Через точку К i проводим (К²1M²1)^²1 В²1]. Искомое расстояние d=[К²²1]

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Исходя из определения, алгоритм решения задачи по нахождению расстояния между плоскостями a и bможет быть выполнен:

1. Взять в плоскости a произвольную точку А (АÎa);

2. Из точки А опустить перпендикуляр m на плоскость b(m'А); m^b;

3. Найти точку М пересечения перпендикуляра m с плоскостью b (M=mÇb);

4. Определить действительную величину [AM]. ( d-=÷AM÷), На практике целесообразно, прежде всего перевести плоскость в проецирующее положение. Этим упрощается решение задачи. Пример: Определить расстояние между плоскостями а и р (рис.7.20).

Решение: Переходим от системы Х( V/H) —>X1( V1/H). По отношению к новой плоскости V1 плоскости a и b занимают проецирующее положение, поэтому расстояние d между их фронтальными следами a¢n и b¢n является искомым.

 Рис.7.20.

 

 

Машиностроительное черчение