Машиностроительное черчение Проекционное черчение Инженерная графика

Математика
Дифференциальные уравнения
Примеры решения интегралов
Решение типовых задач
Сопромат, начерталка
Контрольная работа
Проекционное черчение
Прямоугольная изометрия
Методика изучения курса
Составить спецификацию изделия
Определение центра дуги окружности
Последовательность нанесения размеров
Начертательная геометрия
Задание и изображение плоскости
на чертеже
Пересечение прямой линии с плоскостью
Гранные поверхности.
Чертежи призмы и пирамиды
Пересечение сферы с плоскостью
МЕТРИЧЕСКИЕ ЗАДАЧИ
РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
Физика, электротехника
Лабораторные и контрольные
работы по электротехнике
Термодинамика
Декоративное садоводство
и цветоводство
Садово-парковое искусство
Комнатное цветоводство
Ландшафтный дизайн
Современные садовые стили
Кантри во французском стиле
 
Химия
Примеры решения задач по химии

Пример 2.Через данную точку А провести горизонтально проецирующую плоскость b, перпендикулярную к плоскости a, заданной следами (рис.7.8)

Искомая плоскость рдолжна проходить перпендикулярно к прямой, принадлежащей плоскости a В связи с тем, что плоскость b должна быть горизонтально проецирующей, то прямая, перпендикулярная к ней , должна быть параллельна плоскости H, т.е. являться горизонталью плоскости а или (что тоже самое) горизонтальным следом этой плоскости - aн. Поэтому через горизонтальную проекцию точки А¢ проводим горизонтальный след bн^aн, фронтальный след bv^оси X.

7.3. Определение действительной величины угля между прямой и плоскостью. Между двумя плоскостями

Углом между прямой и плоскостью называется угол между этой прямой и ее проекцией на данную плоскость (прямая не перпендикулярна плоскости).

Пространственная геометрическая модель, иллюстрирующая это определение, показана на рис 7.9 .

План решения задачи может быть, записан:

1 .Из произвольной точки АÎa опускаем перпендикуляр на плоскость;

2. Определяем точку встречи этого перпендикуляра с плоскостью a(точка Аa ортогональная проекция точки А на плоскость a);


3.Находим точку пересечения прямой a с плоскостью а (точка Аa- след прямой а на плоскости a);

4.Проводим (А°Аa)- проекдию прямой а на плоскость a;

5.Определяем действительную величину ÐААaАa,т.е.Ðj0. Решение этой задачи может быть значительно упрощено, если определять не Ðj0между прямой и плоскостью, а дополнительный до 90° Ðg° В этом случае отпадает необходимость в определении точки Аa и

проекции аaЗная величину у0 , вычисляем— j0=90-g0.

Мерой угла между двумя плоскостями служит линейный угол, образованный двумя прямыми — сечениями граней этого угла плоскостью, перпендикулярной к их ребру.

Дня построения линейного угла,  являющегося мерой двухгранного угла, необходимо выполнить следующие графические построения, показанные на рис 7.10 в определенной последовательности,

1. Определяем прямую n - линию пересечения данных плоскостей a и b (п= aÇb);

2. Проводим плоскость d^n (эта плоскость будет перпендикулярна также и к плоскостям aи b;

3. Определяем прямые a=dÇa и b=d Ç b;

4. Находим действительную величину j° между прямыми а и b

.Ðj 0- искомый угол

7.4.Паралельность прямых, прямой и плоскости.

Параллельность плоскостей.

7.4.1. Параллельные прямые.

Если в пространстве прямые параллельны, то их одноименные

проекции также параллельны между собой.

аôôbÞа¢÷÷ b¢; а²ôô b²; а²¢ôô b²¢

Причем, если в пространстве прямые а , b занимают общее положение относительно плоскостей проекций, то для выяснения по эпюру вопроса о параллельности прямых достаточно убедиться, будут ли параллельны между собой их одноименные проекции только на двух плоскостях.

Параллельность проекции на третьей плоскости в этом случае автоматы чески удовлетворяется.

Если прямые параллельны какой- либо плоскости (хотя бы плоскости W), то условие параллельности на третьей плоскости может не выполняться, В этом случае, для выяснения вопроса будут ли прямые параллельны в пространстве, условие параллельности их одноименных горизонтальных и фронтальных проекций будет необходимым, но недостаточным. Для получения ответа следует убедиться в параллельности их профильных проекций.

На рис 7.11 показаны два возможных варианта взаимного расположения прямых АВ и CD.

Рис 7.11


7.4.2.Параллельность прямой и плоскости

Прямая т параллельна плоскости a, если в плоскости a можно провести прямую п, параллельную т.

mïïa,если mïïn (nÎa)

Пример: Через заданную точку А провести плоскость a, параллельную данной прямой f ( рис 7.12).

Решение: 1. Через проекции точки А' и А¢' проводим проекции прямой а (а¢; а² ), соответственно параллельные одноименным проекциям f¢и f²;

Рис.7.13.

 
2. Через проекции точки А(А¢; А²) в произвольном направлении проводим проекции прямой b( b1; b"),

Плоскость a проходит через точку А и параллельна прямой f, так как плоскость (аÎa и аïïf).

Рис.7.12

7.4.3.Параллельность плоскостей

Две плоскости параллельны, если две произвольные пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости.

Пример: Провести через точку А плоскость b, параллельную данной плоскости a, заданной двумя параллельными прямыми а и b (рис 7.13).

На рис.7.13 плоскость b задана пересекающимися прямыми m Çn (m ïïaïïb; nïïl)

Машиностроительное черчение