Машиностроительное черчение Проекционное черчение Инженерная графика

Математика
Дифференциальные уравнения
Примеры решения интегралов
Решение типовых задач
Сопромат, начерталка
Контрольная работа
Проекционное черчение
Прямоугольная изометрия
Методика изучения курса
Составить спецификацию изделия
Определение центра дуги окружности
Последовательность нанесения размеров
Начертательная геометрия
Задание и изображение плоскости
на чертеже
Пересечение прямой линии с плоскостью
Гранные поверхности.
Чертежи призмы и пирамиды
Пересечение сферы с плоскостью
МЕТРИЧЕСКИЕ ЗАДАЧИ
РАЗВЕРТКИ ПОВЕРХНОСТЕЙ
АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
Физика, электротехника
Лабораторные и контрольные
работы по электротехнике
Термодинамика
Декоративное садоводство
и цветоводство
Садово-парковое искусство
Комнатное цветоводство
Ландшафтный дизайн
Современные садовые стили
Кантри во французском стиле
 
Химия
Примеры решения задач по химии

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

В число дисциплин, составляющих основу инженерного образования, входит начертательная геометрия. Некоторые идеи начертательной геометрии были разработаны еще в 1б-17в.в., но в самостоятельную науку начертательная геометрия оформилась в конце 18 в, в связи с возросшими потребностями инженерной практики.

В 1798 году французский инженер Гаспар Монж опубликовал свой труд, «Начертательная геометрия» который лег в основу проекционного черчения.

В российских учебных заведениях систематическое преподавание начертательной геометрии началось с 1810 года, вначале на французском, а затем и на русском языке, В 1821 году профессор Я,С. Севастьянов издает курс «Основания начертательной геометрии».

В 1855 году профессором А.Х.Ребером написана книга по теории проекции с числовыми отметками.

Выдающийся вклад в теорию геометрии внесли русские математики Н И.Лобачевский (1792-1856 г.г.) и Л.Л.Чебышев (1821-1894 г.г,). В дальнейшем развитие начертательной геометрии как науки и учебной дисциплины; принадлежит многим советским ученым и педагогам.

Предмет изучения начертательной геометрии - разработка методов построения и чтения чертежей, а также методов решения на чертежах геометрических задач, связанных с оригиналом.

Правила построения изображений, излагаемых в начертательной геометрии, основаны на методе проекции.

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ И СИМВОЛИКА

Для краткой записи геометрических предложений, алгоритмов решения задач и т.д. используется геометрический язык. 1. Точки обозначаются заглавными латинскими буквами:

A,B,C,D…

арабскими цифрами: 1, 2, 3,4…

последовательность точек: A1, A2, Аз.

2. Линии, произвольно расположенные по отношению к плоскостям проекции, обозначаются строчными буквами латинского алфавита: а, Ь, с, d...

3. Углы - строчными буквами греческого алфавита: ф, ц, р, v.

4. Плоскости - строчными буквами греческого алфавита:a,b,g,e,s.

5. Поверхности - прописными буквами русского алфавита:

цилиндр - Ц, конус - К...

6. Плоскости проекций

горизонтальная - Н, фронтальная - V, профильная - W,

7. Возможное обозначение плоскостей проекций - строчной буквой греческого алфавита -p; горизонтальная - p1, фронтальная - p2. профильная - p3.

8. Оси проекций - строчными буквами:

о- начало координат;

х- ось абсцисс;

у- ось ординат;

z- ось аппликат.

9. Проекции точек:

на горизонтальную плоскость Н- А', В', С',
на фронтальную плоскость V- А", В", С"...
на профильную плоскость W- А///, В///, С///...

10. Проекции линий - по проекциям точек, определяющих линию;кроме того, горизонталь- h; фронталь- f; профильная линия- р.

Символика

е - принадлежит (2ÎN) два принадлежит N

Ì- - включает, содержит (а Ì- а) прямая а принадлежит плоскости a

È - объединение множеств |АВ| È ½ВС| - ломаная АВС

Ç - пересечение множеств

=>• импликация - логическое следствие (а // с и b // с) => а // Ь- [если

а // b и b // с, то а // b]

~- подобие

=- совпадают

|| - параллельны

^ - перпендикулярны

¸- - скрещиваются

—>•- преобразуется: a®a1

ВИДЫ ПРОЕЦИРОВАНИЯ

Существует несколько видов проецирования.

Проекции центральные, - когда задается плоскость про-екции и центр проекции точки, не лежащей в этой плоскости(рис. 1.1).

Рис. 1.1 Рис. 1.2

1.1. Параллельное проецирование

Параллельной проекцией точки будем называть точку пересечения проецирующей прямой, проведенной параллельно заданному направлению, с плоскостью проекции (рис. 1.2).

Параллельные проекции также называют цилиндрическими, которые в свою очередь делятся на: косоугольные и прямоугольные.

В параллельных проекциях, так же как и в центральных:

1) для прямой линии проецирующей поверхностью в общем случаеслужит плоскость, и поэтому прямая линия вообще проецируется в виде прямой;

2) каждая точка и линия в пространстве имеют единственную своюпроекцию;

3) каждая точка на плоскости проекций может быть проекцией множества точек, если через них проходит общая для них проецирующая прямая;

4) каждая линия на плоскости проекций может быть проекцией множества линий, если они расположены в общей для них проеци-рующей плоскости;

5) для построения проекции прямой достаточно спроецировать две ее точки и через полученные проекции этих точек провести прямую линию,

6) если точка Î прямой, то проекция точки принадлежит проекции этой прямой; (рис. 1.3) точка К принадлежит прямой (проекция К0 принадлежит проекции этой прямой),

7) если прямая (АВ) параллельна направлению проецирования, то проекцией прямой является точка А°, она же В° (рис. 1.3),

8) отрезок прямой линии, параллельной плоскости проекций, проецируется на эту плоскость в натуральную величину (CD = C°D° , как отрезки параллельных прямых между параллельными прямыми), (рис. 1.3).

Рис. 1.3

В данном курсе преимущественно рассматриваются прямоугольные проекции (слово прямоугольные часто заменяют на ортогональные, образованное от греческих слов прямой и угол).

Машиностроительное черчение